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Deletions and duplications at the 22q11.2 locus are associated with significant neurodevelopmental and psychiatric morbidity.
Previous diffusion-weighted magnetic resonance imaging (MRI) studies in 22q11.2 deletion carriers (22g-del) found nonspecific
white matter (WM) abnormalities, characterized by higher fractional anisotropy. Here, utilizing novel imaging and processing
methods that allow separation of signal contribution from different tissue properties, we investigate whether higher anisotropy is
driven by (1) extracellular changes, (2) selective degeneration of secondary fibers, or (3) volumetric differences. We further, for the
first time, investigate WM microstructure in 22q11.2 duplication carriers (22g-dup). Multi-shell diffusion-weighted images were
acquired from 26 22g-del, 19 22g-dup, and 18 healthy individuals (HC). Images were fitted with the free-water model to estimate
anisotropy following extracellular free-water elimination and with the novel BedpostX model to estimate fractional volumes of
primary and secondary fiber populations. Outcome measures were compared between groups, with and without correction for WM
and cerebrospinal fluid (CSF) volumes. In 22g-del, anisotropy following free-water elimination remained significantly higher
compared with controls. BedpostX did not identify selective secondary fiber degeneration. Higher anisotropy diminished when
correcting for the higher CSF and lower WM volumes. In contrast, 22g-dup had lower anisotropy and greater extracellular space
than HC, not influenced by macrostructural volumes. Our findings demonstrate opposing effects of reciprocal 22q11.2 copy-
number variation on WM, which may arise from distinct pathologies. In 22g-del, microstructural abnormalities may be secondary to
enlarged CSF space and more densely packed WM. In 22g-dup, we see evidence for demyelination similar to what is commonly

observed in neuropsychiatric disorders.
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INTRODUCTION

Copy number variation (CNV) at the 22q11.2 locus is associated
with significant neurodevelopmental and psychiatric morbidity.
Deletion of the 22q11.2 locus occurs in approximately one in 4000
live births [1]. Medical comorbidities commonly include cardiac
defects [2], craniofacial anomalies [3], and immune dysregulation
[4]. 22g11.2 deletion carriers (22g-del), furthermore, have elevated
risk for autism spectrum disorder, attention deficit-hyperactivity
disorder (ADHD), anxiety, intellectual disability, and up to 25%
develop psychosis [5, 6]. Duplication of the 22q11.2 locus is more
common than the reciprocal deletion (estimated at one out of 700
live births) [7] but was more recently identified and is less well-
characterized [8]. The 22g11.2 duplication is associated with
incomplete penetrance and variable expressivity, even within the
same family; associated features include hypotonia, facial dysmor-
phia, and developmental delay, although many 22q11.2 duplication
carriers (22g-dup) have a normal or near-normal phenotype [9-11].
However, 22g-dup can suffer from a range of comorbidities that
partially overlap those reported for 22g-del, including increased risk
for autism, ADHD, and mild intellectual disability [12, 13].

In contrast, the 22q11.2 duplication is not associated with an
elevated risk of developing psychosis [14], with some studies
suggesting that the risk for psychosis in 22g-dup is lower than in
the general population [15].

Given the importance of white matter (WM) microstructure for
cognitive functioning [16], its disruption in numerous psychiatric
and neurological disorders (including psychosis, mood disorders,
obsessive-compulsive spectrum disorders, epilepsy, dementia, and
Parkinson’s disease) [17-24], and postmortem findings that
implicate WM abnormalities in 22g-del [25, 26], there is a growing
interest in characterizing the nature of WM microstructural
anomalies in 22g-del [27, 28]. Studies to date have applied
diffusion-weighted magnetic resonance imaging (MRI), which
quantifies the directionality and magnitude of water diffusion in
the brain, reflecting the geometrical properties of the environ-
ment in which water is diffusing [29, 30]. The fractional anisotropy
(FA) index, derived from the diffusion tensor imaging (DTI) model,
is the most used index to quantify diffusion properties.

Lower FA has been implicated in multiple idiopathic psychiatric
disorders (i.e., psychosis, depression, post-traumatic stress
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disorder, and obsessive-compulsive spectrum disorders), as well
as neurodegenerative disorders, and is often interpreted as a
proxy for abnormal WM organization [31, 32]. However, while FA is
a sensitive marker to distinguish groups, it is relatively non-specific
and influenced by various cellular (e.g., demyelination, axonal
degeneration, and cytoskeletal damage) and extracellular (e.g.,
atrophy and edema) pathologies [31, 33]. Thus, the neurobiolo-
gical underpinnings of altered FA are unclear.

While there are some earlier studies that reported decreased
FA in single WM tracts in 22qg-del [27, 34, 35], most diffusion-
weighted MRI studies have reported a widespread increase of FA
in 22g-del [28, 36-40]. Importantly a recent multi-site DTI study
comparing 22g-del with matched healthy individuals (HC)
confirmed the finding of higher FA in most tracts in 22qg-del
[41]. Studies investigating WM microstructure in 22qg-dup,
however, have not yet been conducted. Only one previous MRI
study compared gray matter (GM) structure in reciprocal 22q11.2
CNVs. The authors discovered global opposing effects of gene
dosage on cortical thickness and surface area, involving wide-
spread reductions in cortical surface area in 22g-del and increases
in 22g-dup relative to controls, with the opposite pattern for
cortical thickness [42].

In the present study, we compared diffusion MRI data between
reciprocal 22q11.2 CNVs and tested whether opposing effects of
gene dosage, similar to the effects reported for GM, also occur in
WM. To determine the potential mechanisms that might drive FA
alterations, we applied advanced dMRI analysis approaches which
allowed considering: (1) extracellular and cellular changes, as
quantified by free-water (FW) imaging [43]; (2) the role of selective
degeneration of crossing fibers, as quantified by the BedpostX
model [44, 45]; and (3) the interaction between microstructural
diffusion measurements and macrostructural volume changes.

METHODS
Participants
The sample consisted of 26 22g-del, 19 22g-dup, and 18 HC that passed
visual quality control. Patients have been recruited from either (1) Clinical
Genetics, Allergy/Immunology, or Craniofacial Clinics from medical
centers in the Southern California area, or (2) through local support
groups and websites. HC were recruited from the community via web-
based advertisements and local schools, pediatric clinics, and community
sites. Exclusion criteria for all participants were significant neurological or
medical conditions (unrelated to 22q11.2 deletion/duplication), history of
head injury with loss of consciousness, insufficient fluency in English,
and/or substance abuse or dependency within the past six months.
Further exclusion criteria for HC were current or past major mental
disorders (except for ADHD or past episodes of depression) and/or
intellectual disability (IQ below 70). HC were screened for mental
disorders via the Structured Clinical Interview for the Diagnostic and
Statistical Manual of Mental Disorders Version 4 [46] or Computerized
Diagnostic Interview for Children.

All participants or parents, if participants were under the age of 18,
provided written informed consent, and the University of California at Los
Angeles Institutional Review Board approved all study procedures.

Cognitive and clinical assessment

Participants underwent a comprehensive clinical and cognitive test battery
administered by trained clinical psychology students and supervised by
PhD-level clinicians.

Given the previously reported high rates of neuropsychiatric disorders in
22g-del and 22g-dup [11, 12, 47-49], we collected extensive clinical and
cognitive data for the present study. We utilized the Structured Clinical
Interview for DSM V (SCID-l) and the Brief Psychiatric Rating Scale-
Expanded Version (BPRS) [50-52] to assess neuropsychiatric diagnosis and
symptoms. In addition, the Structured Interview for Psychosis-Risk
Syndromes (SIPS) [53] was administered to assess for psychotic and
prodromal (i.e., psychosis-risk) symptoms. Previous research has suggested
that many individuals with the 22g-del present with prodromal symptoms
[54] and up to 25% develop psychosis [55, 56, 6]. 22g-dup, on the other
hand, does not have an elevated risk for psychosis [14], and in fact, there is
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some evidence suggesting a lower risk for psychosis than in the general
population [15].

Furthermore, we were interested in characterizing global and cognitive
functioning. Functional status was, therefore, determined by the Global
Functioning Scales (GAF) [57]. In addition, the Wechsler Abbreviation
Scale for Intelligence-2 Vocabulary (VOC) and Matrix Reasoning (Matrix)
subtests and the Wide Range Achievement Test 4 (WRAT) Reading subtest
were used to assessing intelligent quotient (IQ) and reading ability,
respectively [58, 59].

Image acquisition and preprocessing

Images were acquired on a 3T whole-body scanner (Siemens Magnetom
Prisma) with a 32-channel head coil. Scanning protocols were derived from
the Lifespan Human Connectome Project (HCP) study, including multi-shell
diffusion-weighted images that were acquired with the following protocol:
AP and PA sequence each with voxel size=2.0%20x20mm, TR=
8000 ms, TE=66ms, flip angle =90°, FOV =208 mm, slice thickness =
2.00 mm, slices =72, and 108 volumes, including 46 gradient directions
with b=1500s/mm? 46 gradient directions with b=3000s/mm? 3
gradient directions with b=200s/mm? 6 gradient directions with
b =500s/mm?, and 7 volumes with b =0s/mm?.

All data underwent a visual quality check for movement artifacts, echo-
planar imaging (EPI) distortions, and structural abnormalities by investiga-
tors blinded to group allocation. We excluded individuals who did not
have complete data for the AP and PA sequence and individuals who
presented with severe motion artifacts (excluding a total of 25 individuals:
5 HC, 12 22g-del, and 8 22g-dup). We preprocessed the remaining images
utilizing the HCP Minimal Preprocessing Pipeline v4.0.0 [60]. First, we
applied intensity normalization of the mean b0 image across the diffusion
series and utilized b0 pairs to estimate and correct EPI distortion, using
Topup, FSL [61]. Next, diffusion images were corrected for eddy-current
induced field inhomogeneities, head motion, and gradient nonlinearity
utilizing FSL. Last, we used structural images to mask diffusion images [62].

Image analyses

FA Analyses. We first investigated group differences in FA to determine
the comparability of our findings to previous findings of increased FA in
22qg-del. From the preprocessed diffusion-weighted images, we, therefore,
computed diffusion tensors utilizing a least-squares fit and calculated FA
maps from these tensors [63].

Cellular and extracellular analyses. To identify if the FA abnormalities
originate from the cellular or extracellular domains, we fitted a two-
compartment FW model to the multi-shell diffusion data using a
regularized non-linear fit [43]. One compartment models signals from
water molecules that diffuse unhindered in the extracellular space using an
isotropic diffusion tensor with a fixed diffusivity of FW in body
temperature. The fractional volume of this FW compartment is identified
as FW. Previous studies have demonstrated that an increase of FW
indicates extracellular pathological processes such as atrophy, edema, and
neuroinflammation [64]. The second compartment models hindered and
restricted diffusion of water molecules in the vicinity of the cellular space
using a diffusion tensor, from which FA of the tissue (FAy) is derived
[43, 64, 65]. FAT represents anisotropy following the elimination of FW
contribution, and therefore FAT more specifically reflects changes in the
WM tissue (such as changes in myelination and axonal membrane health)
than FA [43, 66]. FW imaging studies in healthy aging and in several
disorders (including psychosis [67, 68], mood disorders [69, 70], eating
disorders [71], traumatic brain injury [72], dementia [73, 74], and
Parkinson’s disease [75, 76]) have demonstrated the importance of
separating cellular and extracellular WM abnormalities [77].

Identification of secondary degeneration. We used the crossing fiber
BedpostX model [44] to obtain information about the complex fiber
architecture at each voxel. Previous studies have suggested that increased
FA could result from selective degeneration of secondary fibers in regions
with crossing fibers [78, 79]1. This model considers three fiber populations
with distinct orientations and an additional isotropic compartment. The
model parameters are estimated in each voxel using a Bayesian framework
and include the volume fractions for the primary (F1), secondary (F2), and
tertiary (F3) fiber populations, as well as the fractional volume of the
isotropic compartment (F;s,). Degeneration of secondary fibers is expected
to be indicated by a decrease of F2 but not F1. Previous studies have
demonstrated that this selective degeneration of secondary fibers yields
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22q11.2 deletion carriers (22q-del) (%)

Table 2. Psychiatric diagnoses in CNV carriers*.
Substance-related disorders 3.85
Schizophrenia and other psychotic disorders 11.54
Mood disorders 26.92
Anxiety disorders 61.54
Obsessive-compulsive spectrum disorder 7.69
Eating disorders 3.85
Autism Spectrum Disorder 34.62
Attention deficit hyperactivity disorder 46.15

*Obtained from the Structural Clinical Interview for DSM V (SCID-I)

22qg11.2 duplication carriers (22q-dup) (%)
0

0

26.32

4211

31.58
52.63

I 0.00

0.05

0.00

0.05

l 0.00

0.05

0.00

HC 22q-dup versus HC

22q-del versus 22-dup

T
"Rkt

Fig. 1 Group comparisons between 22q11.2 deletion carriers (22q-del) and healthy controls (HC) (left), 22q11.2 duplication carriers (22q-dup)

and HC (middle), and 22qg-del and 22qg-dup. Figure 1 displays the results from Tract-Based Spatial Statistics and Randomize [81, 82]. The white
matter skeleton (thresholded at fractional anisotropy (FA) > 0.25) is shown in green on top of the average image of all registered FA images. Voxels
that demonstrated significant group differences are thickened to increase visibility. The 22g-del group compared with the HC group (left) showed
higher fractional anisotropy (FA; significant regions highlighted in orange), which remained higher in FA of the tissue (FA7) values (in orange) after
accounting for the effect of extracellular free-water (FW). 22g-del also showed lower FW values than HC (in green) and higher fractions of both the
primary (F1) and secondary (F2) fiber populations (in orange), and lower fractional volume of the isotropic compartment Fi, (in green). In contrast,
22g-dup compared with HC (middle) presented with lower FA values (in red), as well as lower FA (in red), higher FW values (in blue), lower fractions
of the primary and secondary fiber populations (F1, F2, in red) and higher F;s, (in blue). A direct comparison between 22g-del and 22g-dup is
provided on the right, showing widespread group differences. 22g-del displayed higher FA/FA{/F1/F2 (in orange) and lower FW/F;, (in green).
Please note that TBSS provides a voxel-wise rather than tract-specific output. The voxels that demonstrate group differences are widespread and
located in most of the main fiber tracts. For a tract-by-tract comparison of FA; and FW between groups, please see Supplementary Table 1.

FA analyses

An F-test revealed a significant group effect on FA in 54% of the
WM skeleton. Post hoc t tests demonstrated that 22g-del had
significantly higher FA than HC in 41% of the WM skeleton, and
22g-dup had significantly lower FA than HC in 37% of the WM
skeleton. Further, 22g-del displayed significantly higher FA than
22g-dup in 66% of the WM skeleton (Fig. 1).

Cellular and extracellular analyses

F-tests comparing the output of the FW imaging measures revealed
significant group effects on FAt in 45% of the WM skeleton and on
FW in 72% of the WM skeleton. Post hoc t tests revealed that
relative to HC, 22g-del had higher FAt (in 24% of the WM skeleton)
and lower FW (in 49% of the WM skeleton). 22g-dup presented with
the opposite pattern: lower FA; (in 8% of the WM skeleton) and
higher FW (in 59% of the WM skeleton) than HC. In addition, 22g-del
demonstrated higher FAt (54% of the WM skeleton) and lower FW
(76% of the WM skeleton) than 22g-dup (Fig. 1, Table 3).

SPRINGER NATURE

We did not observe a significant correlation between FAt or FW
and 1Q [58, 59], global functioning [57], nor the SIPS positive and
negative symptom scales in either 22g-del or 22g-dup carriers.

Complex fiber architecture and the identification of selective
degeneration

The F-tests comparing the BedpostX fractional volume measures
between groups showed a significant group effect on the fraction
of both primary (F1 in 36% of the WM skeleton) and secondary (F2
in 40% of the WM skeleton) fibers, as well as the partial volume
fraction of the isotropic compartment (F, in 66% of the WM
skeleton). Post-hoc t-tests revealed that 22g-del had higher
primary (F1 in 8% of the WM skeleton) and secondary (F2 in
28% of the WM skeleton) fiber fractions and a lower isotropic
fraction (Fiso in 49% of the WM skeleton) than HC, which is not
consistent with a pattern of degeneration of secondary fibers
[78, 79]. Similar to the FA results, 22g-dup presented with the
opposite pattern: lower primary (26% of the WM skeleton) and
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Table 3.

FAr
F-test
22q-del versus HC
22qg-dup versus HC
22g-del versus 22g-dup
w
F-test
22g-del versus HC

22qg-dup versus HC

22g-del versus 22g-dup

FAT and FW group comparisons *.

Covariates: age, sex, motion

45% of the WM skeleton
22qg-del > HC: 24%
22¢g-del < HC: -

22g-dup > HC: -

22g-dup < HC: 8%
22qg-del > 22g-dup: 54%
22g-del < 22g-dup: -

72% of the WM skeleton
22g-del > HC: -

22qg-del < HC: 49%
22g-dup > HC: 59%
22g-dup < HC: -

22g-del > 22g-dup: -
22g-del < 22g-dup: 76%

Covariates: age, sex, motion,
CSF volume

24% of the WM skeleton
22qg-del > HC: -

22qg-del < HC: -

22g-dup > HC: -

22g-dup < HC: 23%
22qg-del > 22g-dup: 40%
22qg-del < 22g-dup: -

63% of the WM skeleton
22g-del > HC: -

22qg-del < HC: 3%
22qg-dup > HC: 60%
22g-dup < HC: -

22qg-del > 22g-dup: -
22qg-del < 22g-dup: 69%

Covariates: age, sex, motion,
WM volume

27% of the WM skeleton
22g-del > HC: 1,5%
22qg-del < HC: -

22g-dup > HC: -

22g-dup < HC: 7%
22qg-del > 22g-dup: 35%
22g-del < 22g-dup: -

55% of the WM skeleton
22g-del > HC: -

22g-del < HC: -

22qg-dup > HC: 60%
22g-dup < HC: -

22g-del > 22g-dup: -
22g-del < 22g-dup: 60%

CSF cerebrospinal fluid, FAr fractional anisotropy of cellular tissue, FW extracellular free-water, HC healthy controls, WM white matter, 22g-del 22q11.2 deletion

carriers, 22q-dup 22q11.2 duplication carriers.

*All group comparisons were conducted utilizing non-parametric voxel-wise permutation tests for each voxel on the WM skeleton in FSL's Randomize [81]. We
tested data against a null distribution generated with 5000 permutations for each contrast using threshold-free cluster enhancement [82] and family wise error

correction at a significance level of p <0.05.
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Fig. 2 Macrostructural volumetric measures across groups. Group comparison for relative cerebrospinal fluid volume (CSF), relative white
matter (WM) volume, and relative gray matter (GM) volume between 22q11.2 deletion carriers (22g-del), 22q11.2 duplication carriers (22g-
dup), and healthy controls (HC). 22g-del had significantly higher CSF volume and lower WM volume relative to 22g-dup and HC. GM volume

did not significantly differ between groups.

secondary (21% of the WM skeleton) fiber fractions than HC and a
higher isotropic fraction (in 48% of the WM skeleton) than HC
(Fig. 1), which also is not consistent with a pattern of degeneration
of secondary fibers [78, 79]. For group comparisons between 22g-
del and 22g-dup, please see Table 3.

Comparison of macrostructural volumetric measures

We did not observe a significant overall group effect on ICV (F=
3.75,df1 =2, df2 =58, p =0.029) or GM volume (F =2.07, df1 =2,
df2 =58, p =0.14). However, there was a significant group effect
on WM volume (F=17.26, dfl =2, df2 =158, p<0.001) and CSF
volume (F=28.54, dfl =2, df2=58, p<0.001). Post hoc t-tests
revealed that 22g-del had lower WM volume than both 22g-dup
(p =0.062) and HC (p = 0.050). In addition, 22g-del had higher CSF
volume than both 22g-dup (p = 0.002) and HC (p < 0.001) (Fig. 2).

Accounting for macrostructural volumetric measures

Given the group effect on CSF and WM volume, we conducted
two additional analyses of the voxel-wise F- and t tests
comparing FAy, FW, F1, F2, and F;;,: once controlling for CSF,
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and once controlling for WM volume. This was done to test
whether the microstructural impairments reported above could
be accounted for by volumetric differences between groups.
Indeed, when correcting previous analyses for WM volume,
differences between 22g-del and HC in FW and F1 were no
longer significant, and differences in FA+, F2, and F;;, were more
localized (Table 3, Table 4, and Fig. 3). Similarly, when adjusting
previous analyses for CSF volume, differences between 22qg-del
and HC in FAT and F1 were no longer significant, and differences
in FW, F2, and F;;, were more localized (Table 3, Table 4, and
Fig. 3). Notably, group differences between 22g-dup and HC
remained stable after adding CSF or WM volume as covariates
(Table 3, Table 4, and Fig. 3).

DISCUSSION

The present study provides novel information regarding WM
abnormalities in 22q11.2 CNV carriers. First, using new multi-shell
diffusion sequences, we confirmed previous findings of abnor-
mally high FA in 22g-del. Further analyses demonstrated that the
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Table 4. F1, F2, and F;,, group comparisons*.

F1
F-test
22g-del versus HC
22qg-dup versus HC
22qg-del versus 22g-dup
F2
F-test
22g-del versus HC
22qg-dup versus HC
22qg-del versus 22g-dup
Fiso
F-test
22g-del versus HC

22qg-dup versus HC

22qg-del versus 22g-dup

Covariates: age, sex, motion

36% of the WM skeleton
22qg-del > HC: 8%

22qg-del < HC: -

22g-dup > HC: -

22g-dup < HC: 26%
22qg-del > 22g-dup: 43%
22g-del < 22g-dup: -

40% of the WM skeleton
22g-del > HC: 28%
22qg-del < HC: -

22g-dup > HC: -

22g-dup < HC: 21%
22qg-del > 22g-dup: 46%
22g-del < 22g-dup: -

66% of the WM skeleton
22g-del > HC: -

22qg-del < HC: 49%
22qg-dup > HC: 48%
22g-dup < HC: -

22qg-del > 22g-dup: -
22qg-del < 22g-dup: 72%

Covariates: age, sex, motion,

CSF volume

32% of the WM skeleton
22qg-del > HC: -

22qg-del < HC: -

22q-dup > HC: -

22g-dup < HC: 29%
22qg-del > 22g-dup: 31%
22qg-del < 22g-dup: -

26% of the WM skeleton
22g-del > HC: 12%
22qg-del < HC: -

22g-dup > HC: -

22g-dup < HC: 21%
22qg-del > 22g-dup: 34%
22qg-del < 22g-dup: -

55% of the WM skeleton
22g-del > HC: -

22qg-del < HC: 18%
22q-dup > HC: 52%
22g-dup < HC: -

22qg-del > 22g-dup: -
22qg-del < 22g-dup: 64%

Covariates: age, sex, motion,

WM volume

14% of the WM skeleton
22qg-del > HC: -

22qg-del < HC: -

22g-dup > HC: -

22g-dup < HC: 21%
22g-del > 22g-dup: 21%
22g-del < 22g-dup: -

23% of the WM skeleton
22g-del > HC: 2%

22qg-del < HC: -

22g-dup > HC: -

22g-dup < HC: 19%
22qg-del > 22g-dup: 28%
22g-del < 22g-dup: -

50% of the WM skeleton
22g-del > HC: -

22qg-del < HC: 12%
22g-dup > HC: 47%
22g-dup < HC: -

22qg-del > 22g-dup: -
22qg-del < 22g-dup: 47%

CSF cerebrospinal fluid, F1 fractional volume of primary fiber population, F2 fractional volume of secondary fiber population, F;, fractional volume of the
isotropic compartment, HC healthy controls, WM white matter, 22g-del 22q11.2 deletion carriers, 22g-dup 22q11.2 duplication carriers.

*All group comparisons were conducted utilizing non-parametric voxel-wise permutation tests for each voxel on the WM skeleton in FSL's Randomize [81]. We
tested data against a null distribution generated with 5000 permutations for each contrast using threshold-free cluster enhancement [82] and family wise error

correction at a significance level of p < 0.05.

observed higher FA remains following the elimination of
extracellular FW and cannot be attributed to selective degenera-
tion of secondary fibers. However, higher FA, which was
accompanied by higher primary and secondary fiber fractions
and lower extracellular space, was associated with enlarged CSF
and smaller WM volumes in 22g-del. The finding of reduced WM
volume and reduced extracellular space within the WM suggests
that the WM in 22g-del may be abnormally densely packed.

Further, we found that 22qg-del presents with distinct WM
microstructural abnormalities compared to those with 22g-dup. In
22g-dup, we found significantly lower FA and lower primary and
secondary fiber fractions, as well as higher extracellular space,
relative to controls. This pattern is similar to what has been
observed for many behaviorally defined neuropsychiatric dis-
orders, such as psychosis, mood disorders, obsessive-compulsive
disorder, and dementia [88-93]. In contrast to 22g-del, the
microstructural changes were not associated with volumetric
changes, suggesting that distinct pathologies may underlie WM
pathology in reciprocal 22q11.2 CNVs (Fig. 4).

WM architecture in 22q-del

We observed widespread higher FA in 22g-del than HCs, affecting
most of the main WM tracts, and no regions with lower FA in 22q
del. Previous studies examining FA in 22g-del described incon-
sistent results. Some smaller studies suggested lower FA in localized
tracts in 22g-del compared to HC [94, 27, 34, 95, 35]. However—
aligning with our findings—prior studies found widespread
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increased FA [28, 36, 37], along with decreased extracellular space
[96]. Notably, the most extensive multi-site study to date [41] also
demonstrated lower diffusivity in 22g-del and higher FA in most
fiber tracts. As a possible explanation for the inconsistencies, the
authors speculated that FA findings may be age-dependent [39, 40].

To better understand the finding of higher FA in our sample, we
examined if it is driven by (1) extracellular changes, (2) selective
degeneration of secondary fibers, or (3) macrostructural volu-
metric effects. Utilizing the FW imaging approach [43, 64] to
control for extracellular changes, widespread higher FA; was still
observed in 22g-del, suggesting that extracellular changes alone
did not explain the increase in FA. We also found lower FW,
indicating a smaller extracellular space within WM in 22g-del than
HC. Using the BedpostX method, which allows us to differentiate
the primary and secondary fiber populations in one voxel, we
found a higher proportion of both primary and secondary fibers in
22g-del compared to HC. This pattern is not consistent with
selective degeneration of crossing fibers, which was found to
cause higher FA in regions with crossing fibers in healthy aging
and Alzheimer's Disease populations [78, 79]. Instead, the
BedpostX results in 22g-del aligned with the FW imaging results
and showed a higher proportion of cellular volume at the expense
of smaller extracellular volume at each voxel. In addition, we
observed lower overall WM volumes and increased CSF volumes in
22qg-del relative to HC. Importantly, when adjusting our statistical
analyses for these macrostructural group differences, the changes
in FA and FAT between 22g-del and HC were no longer significant.

Translational Psychiatry (2021)11:580
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Fig. 3 The effect of controlling for macrostructural volume on the percentage of white matter (WM) skeleton that displays significant
group differences. Comparing 22q11.2 deletion carriers (22g-del) and healthy controls (HC) (Panel A) shows that without controlling for
macrostructural volume (left column), 22g-del displays significant differences in all microstructural parameters (FAt, FW, F1, F2, Fis.). When
controlling for relative cerebrospinal fluid (CSF) volume (middle column) or relative WM volume (right column), these group differences
disappear or diminish. Comparing 22q11.2 duplication carriers (22g-dup) and HC (Panel B) shows that the percentage of skeleton voxels with
significant findings (left column) remain similar when controlling for CSF volume (middle row) or WM volume (right row).

22q-del versus HC _ 22q-dup versus HC

‘WM organization
FA, FA;, F1, F2

‘WM extracellular space
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Fig. 4 Summary of overall results. When not correcting for macroscopic volumes, 22q11.2 deletion (22g-del) and 22q11.2 duplication carriers
(22g-dup) show opposite patterns of white matter (WM) changes compared with healthy controls (HC). Significant macrostructural changes
(lower WM/ higher cerebrospinal (CSF) volume) were found in 22g-del but not in 22g-dup. When controlling for macrostructural effects,
microstructural changes are no longer significant in 22g-del but remain significant in 22g-dup. Taken together, these results do not support

gene dosage as a direct cause for micro- or macrostructural differences in 22g-del and 22g-dup.

While our current analysis cannot deduce causality, we
speculate that enlarged CSF volume (i.e., in ventricles and around
the brain parenchyma) in 22g-del might contribute to smaller WM
volume, which then leads to reduced extracellular space within
the WM and therefore more densely packed cellular structures.
Several previous studies [97-99] have shown increased CSF in
22g-del, with the most frequent changes observed for the lateral
and third ventricle. Further, research utilizing a 22g-del mouse
model has reported early and progressive ventricle enlargement
due to defective ciliary motility which in turn is caused by elevated
dopamine receptor levels [100], suggesting a potential neurobio-
logical mechanism underlying CSF abnormalities in 22g-del. At the
same time, postmortem studies in 22g-del have suggested that
gliotic and neuronal migration defects might alter WM micro-
structure and density [25, 26]. We, therefore, acknowledge that
future longitudinal studies are needed to determine how micro
and macrostructural abnormalities interact with one another in
22q11.2 CNV carriers.

Translational Psychiatry (2021)11:580

In line with our proposed interpretation of more densely packed
WM in 22g-del, other clinical populations that observed higher FA
(i.e., infants with extremely preterm birth and individuals with
Williams's syndrome) have speculated that the increased FA could
be reflective of greater WM packing density [101-103]. Further-
more, diffusion studies in individuals with idiopathic normal
pressure hydrocephalus have reported regionally higher FA and—
in line with our hypothesis—a positive correlation between FA
and ventricular volume [104]. We speculate that the neurological
consequences of more densely packed WM might include
reduced efficiency of electric signal transport or less effective
extracellular matrix; however, preclinical studies investigating this
possibility in 22g-del models have not yet been done. Indeed,
previous research in (mild) traumatic brain injury and neurode-
generative disorders has suggested that axonal swellings or
beading translate into disturbed axonal conduction and synaptic
transmission [105]. However, we acknowledge that our interpreta-
tion is speculative, and future studies are needed to explore the
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underlying neurobiological basis of WM abnormalities in 22q11.2
CNV carriers.

Along the same lines, future longitudinal studies observing
macro- and microstructural relationships are needed to explore
the role of brain pathologies underlying psychiatric symptoms in
22g-del. Similar to our finding of enlarged CSF in 22g-del, previous
studies have highlighted the role of increased CSF in various
neurological and psychiatric disorders, including dementia [106]
and mood disorder [107], and enlarged ventricles are considered
one of the hallmarks of psychosis [108]. However, most previous
studies have reported decreased rather than increased FA in
neuropsychiatric disorders, such as dementia, mood disorders,
and psychosis [17-24]. Interestingly, increased FA has been
reported in populations at clinical high risk for psychosis, which
might be associated with an altered maturational WM trajectory
and an earlier peak of WM development [109]. Even though we
found increased FA in 22g-del relative to controls, there are
important differences from other clinical high-risk populations.
Specifically, subjects with 22g-del present with various other
medical and clinical comorbidities, including autism spectrum
disorder, intellectual disability, and anxiety disorder. This, together
with the observed widespread macro-and microstructural
abnormalities suggests that 22g-del is characterized by early
neurodevelopmental abnormalities, which may be independent of
the later risk to develop psychosis. Future longitudinal studies,
including a follow-up of the current cohort, may shed more light
on the relationship between psychosis onset in the 22g-del
individuals and changes in dMRI measures.

WM architecture in 22q-dup

As the first study to investigate WM architecture in 22g-dup, our
findings indicate that the 22q11.2 duplication is associated with
an opposing pattern of WM alterations to those that characterize
22qg-del. Specifically, 22g-dup demonstrated lower FA and FAf,
lower primary and secondary fiber fractions (F1 and F2), and
higher isotropic space (FW and F;,) than HC. Interestingly, while
we observed a high spatial overlap between abnormalities in 22g-
del and 22g-dup, in 22g-dup, microstructural WM abnormalities
were independent of macrostructural volume. Similar WM
abnormalities (lower FA/FAg, higher FW) occur in healthy aging,
in neurodegenerative disorders such as dementia, as well as
psychiatric disorders including depression and schizophrenia
[70, 74, 78, 110-112].

The opposing WM architecture findings in 22g-del and 22g-dup
are consistent with imaging studies of other reciprocal CNVs,
including 15q11.2 and 16p11.2, in which opposite effects on WM
structure have also been observed [113, 114]. Authors of the cited
studies speculate that findings might indicate a dosage effect of
genes within the affected locus on brain structure. The
interpretation of a 22q11.2 gene dosage effect on WM is
particularly compelling, given that several genes essential for
myelination [115] and cortical circuit formation [116] are located
within the 22q11.2 locus. Specifically, the 22q11.2 region encodes
the Nogo-66 receptor gene, a growth inhibitor essential for
myelin-depended regulation of plasticity [117]. Indeed, one
previous study demonstrated that increased FA in 22g-del was
associated with an altered dosage of the Nogo-66 receptor gene.
The authors speculated that the variations in the Nogo-66
receptor gene might lead to a lack of myelination inhibition,
which translates into higher FA [118].

While future studies are needed to further explore the
interaction between genes within the 22q11.2 locus and WM
structure, our results suggest that the pathologies underlying
opposing patterns of WM abnormalities in 22g-del and 22g-dup
might differ from one another. Specifically, while lower FA in 22g-
dup could be related to less myelin, the higher FA observed in
22g-del is less likely to result from abnormally increased
myelination, given previous postmortem studies [25, 26] and the
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severe functional abnormalities [5, 119] associated with 22g-del.
Instead, our findings suggest more complex differences between
these reciprocal CNVs, in which microstructural WM changes are
related to macrostructural volume changes in 22q11.2 deletion,
but not 22q11.2 duplication. Postmortem and animal studies are
warranted to determine the underlying neurobiology of the
observed effects [120, 121].

Limitations and future directions

The limited sample size did not allow us to investigate subgroups of
22q11.2 CNV carriers with particular psychiatric phenotypes or to
explore the association between brain structure and clinical and
cognitive impairments in depth. Future investigations in larger
cohorts are warranted to compare 22g-del with and without
psychotic symptoms, given the increased risk for psychosis in
22g-del [56]. Specifically, such studies could investigate the
relationship of brain structural abnormalities with increased risk
for psychosis or other common psychiatric disorders in 22g-del and
22g-dup, such as anxiety, mood, and developmental disorders.

As highlighted above, longitudinal studies are also of interest to
establish trajectories of neuroanatomical abnormalities and to
further elucidate the complex interaction between microstructural
and macrostructural abnormalities. Last, while we applied
advanced models to investigate WM pathology in 22g-del and
22qg-dup, we could not include all factors that might influence the
diffusion signal. For example, we could not account for potential
vascular abnormalities, which may be present in 22q11.2 CNV
carriers, affecting diffusion MRl measurements [122].

CONCLUSION

Here, we conducted the first study to apply advanced dMRI
analysis methods to elucidate WM microstructure abnormalities in
reciprocal 22q11.2 CNVs. Findings revealed opposing effects of the
22q11.2 deletion and duplication on WM architecture. In 22g-del,
we identified an association between WM microstructure findings
and macrostructural volumetric measures, suggesting microstruc-
tural abnormalities are directly related to macrostructural features.
WM alterations in 22g-dup, however, appear similar to those
observed in other neuropsychiatric disorders such as schizophre-
nia, bipolar disorder, and dementia, suggesting reduced myelina-
tion of WM fibers. Hence, the pathology underlying these
opposing effects may differ between 22g-del and 22g-dup and
thus does not suggest a direct gene dosage effect on WM. Further
longitudinal and translational studies are needed to elucidate the
mechanisms underlying WM microstructure and macrostructure
alterations resulting from CNV at the 22q11.2 gene locus.
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